
Network Working Group M. Mathis
Request for Comments: 2018 J. Mahdavi
Category: Standards Track PSC
 S. Floyd
 LBNL
 A. Romanow
 Sun Microsystems
 October 1996

 TCP Selective Acknowledgment Options

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 TCP may experience poor performance when multiple packets are lost
 from one window of data. With the limited information available
 from cumulative acknowledgments, a TCP sender can only learn about a
 single lost packet per round trip time. An aggressive sender could
 choose to retransmit packets early, but such retransmitted segments
 may have already been successfully received.

 A Selective Acknowledgment (SACK) mechanism, combined with a
 selective repeat retransmission policy, can help to overcome these
 limitations. The receiving TCP sends back SACK packets to the sender
 informing the sender of data that has been received. The sender can
 then retransmit only the missing data segments.

 This memo proposes an implementation of SACK and discusses its
 performance and related issues.

Acknowledgements

 Much of the text in this document is taken directly from RFC1072 "TCP
 Extensions for Long-Delay Paths" by Bob Braden and Van Jacobson. The
 authors would like to thank Kevin Fall (LBNL), Christian Huitema
 (INRIA), Van Jacobson (LBNL), Greg Miller (MITRE), Greg Minshall
 (Ipsilon), Lixia Zhang (XEROX PARC and UCLA), Dave Borman (BSDI),
 Allison Mankin (ISI) and others for their review and constructive
 comments.

Mathis, et. al. Standards Track [Page 1]

https://tools.ietf.org/pdf/rfc1072

RFC 2018 TCP Selective Acknowledgement Options October 1996

1. Introduction

 Multiple packet losses from a window of data can have a catastrophic
 effect on TCP throughput. TCP [Postel81] uses a cumulative
 acknowledgment scheme in which received segments that are not at the
 left edge of the receive window are not acknowledged. This forces
 the sender to either wait a roundtrip time to find out about each
 lost packet, or to unnecessarily retransmit segments which have been
 correctly received [Fall95]. With the cumulative acknowledgment
 scheme, multiple dropped segments generally cause TCP to lose its
 ACK-based clock, reducing overall throughput.

 Selective Acknowledgment (SACK) is a strategy which corrects this
 behavior in the face of multiple dropped segments. With selective
 acknowledgments, the data receiver can inform the sender about all
 segments that have arrived successfully, so the sender need
 retransmit only the segments that have actually been lost.

 Several transport protocols, including NETBLT [Clark87], XTP
 [Strayer92], RDP [Velten84], NADIR [Huitema81], and VMTP [Cheriton88]
 have used selective acknowledgment. There is some empirical evidence
 in favor of selective acknowledgments -- simple experiments with RDP
 have shown that disabling the selective acknowledgment facility
 greatly increases the number of retransmitted segments over a lossy,
 high-delay Internet path [Partridge87]. A recent simulation study by
 Kevin Fall and Sally Floyd [Fall95], demonstrates the strength of TCP
 with SACK over the non-SACK Tahoe and Reno TCP implementations.

 RFC1072 [VJ88] describes one possible implementation of SACK options
 for TCP. Unfortunately, it has never been deployed in the Internet,
 as there was disagreement about how SACK options should be used in
 conjunction with the TCP window shift option (initially described
 RFC1072 and revised in [Jacobson92]).

 We propose slight modifications to the SACK options as proposed in
 RFC1072. Specifically, sending a selective acknowledgment for the
 most recently received data reduces the need for long SACK options
 [Keshav94 , Mathis95]. In addition, the SACK option now carries full
 32 bit sequence numbers. These two modifications represent the only
 changes to the proposal in RFC1072. They make SACK easier to
 implement and address concerns about robustness.

 The selective acknowledgment extension uses two TCP options. The
 first is an enabling option, "SACK-permitted", which may be sent in a
 SYN segment to indicate that the SACK option can be used once the
 connection is established. The other is the SACK option itself,
 which may be sent over an established connection once permission has
 been given by SACK-permitted.

Mathis, et. al. Standards Track [Page 2]

https://tools.ietf.org/pdf/rfc2018
https://tools.ietf.org/pdf/rfc1072
https://tools.ietf.org/pdf/rfc1072
https://tools.ietf.org/pdf/rfc1072
https://tools.ietf.org/pdf/rfc1072

RFC 2018 TCP Selective Acknowledgement Options October 1996

 The SACK option is to be included in a segment sent from a TCP that
 is receiving data to the TCP that is sending that data; we will refer
 to these TCP’s as the data receiver and the data sender,
 respectively. We will consider a particular simplex data flow; any
 data flowing in the reverse direction over the same connection can be
 treated independently.

2. Sack-Permitted Option

 This two-byte option may be sent in a SYN by a TCP that has been
 extended to receive (and presumably process) the SACK option once the
 connection has opened. It MUST NOT be sent on non-SYN segments.

 TCP Sack-Permitted Option:

 Kind: 4

 +---------+---------+
 | Kind=4 | Length=2|
 +---------+---------+

3. Sack Option Format

 The SACK option is to be used to convey extended acknowledgment
 information from the receiver to the sender over an established TCP
 connection.

 TCP SACK Option:

 Kind: 5

 Length: Variable

 +--------+--------+
 | Kind=5 | Length |
 +--------+--------+--------+--------+
 | Left Edge of 1st Block |
 +--------+--------+--------+--------+
 | Right Edge of 1st Block |
 +--------+--------+--------+--------+
 | |
 / . . . /
 | |
 +--------+--------+--------+--------+
 | Left Edge of nth Block |
 +--------+--------+--------+--------+
 | Right Edge of nth Block |
 +--------+--------+--------+--------+

Mathis, et. al. Standards Track [Page 3]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

 The SACK option is to be sent by a data receiver to inform the data
 sender of non-contiguous blocks of data that have been received and
 queued. The data receiver awaits the receipt of data (perhaps by
 means of retransmissions) to fill the gaps in sequence space between
 received blocks. When missing segments are received, the data
 receiver acknowledges the data normally by advancing the left window
 edge in the Acknowledgement Number Field of the TCP header. The SACK
 option does not change the meaning of the Acknowledgement Number
 field.

 This option contains a list of some of the blocks of contiguous
 sequence space occupied by data that has been received and queued
 within the window.

 Each contiguous block of data queued at the data receiver is defined
 in the SACK option by two 32-bit unsigned integers in network byte
 order:

 * Left Edge of Block

 This is the first sequence number of this block.

 * Right Edge of Block

 This is the sequence number immediately following the last
 sequence number of this block.

 Each block represents received bytes of data that are contiguous and
 isolated; that is, the bytes just below the block, (Left Edge of
 Block - 1), and just above the block, (Right Edge of Block), have not
 been received.

 A SACK option that specifies n blocks will have a length of 8*n+2
 bytes, so the 40 bytes available for TCP options can specify a
 maximum of 4 blocks. It is expected that SACK will often be used in
 conjunction with the Timestamp option used for RTTM [Jacobson92],
 which takes an additional 10 bytes (plus two bytes of padding); thus
 a maximum of 3 SACK blocks will be allowed in this case.

 The SACK option is advisory, in that, while it notifies the data
 sender that the data receiver has received the indicated segments,
 the data receiver is permitted to later discard data which have been
 reported in a SACK option. A discussion appears below in Section 8
 of the consequences of advisory SACK, in particular that the data
 receiver may renege, or drop already SACKed data.

Mathis, et. al. Standards Track [Page 4]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

4. Generating Sack Options: Data Receiver Behavior

 If the data receiver has received a SACK-Permitted option on the SYN
 for this connection, the data receiver MAY elect to generate SACK
 options as described below. If the data receiver generates SACK
 options under any circumstance, it SHOULD generate them under all
 permitted circumstances. If the data receiver has not received a
 SACK-Permitted option for a given connection, it MUST NOT send SACK
 options on that connection.

 If sent at all, SACK options SHOULD be included in all ACKs which do
 not ACK the highest sequence number in the data receiver’s queue. In
 this situation the network has lost or mis-ordered data, such that
 the receiver holds non-contiguous data in its queue. RFC 1122,
 Section 4.2.2.21 , discusses the reasons for the receiver to send ACKs
 in response to additional segments received in this state. The
 receiver SHOULD send an ACK for every valid segment that arrives
 containing new data, and each of these "duplicate" ACKs SHOULD bear a
 SACK option.

 If the data receiver chooses to send a SACK option, the following
 rules apply:

 * The first SACK block (i.e., the one immediately following the
 kind and length fields in the option) MUST specify the contiguous
 block of data containing the segment which triggered this ACK,
 unless that segment advanced the Acknowledgment Number field in
 the header. This assures that the ACK with the SACK option
 reflects the most recent change in the data receiver’s buffer
 queue.

 * The data receiver SHOULD include as many distinct SACK blocks as
 possible in the SACK option. Note that the maximum available
 option space may not be sufficient to report all blocks present in
 the receiver’s queue.

 * The SACK option SHOULD be filled out by repeating the most
 recently reported SACK blocks (based on first SACK blocks in
 previous SACK options) that are not subsets of a SACK block
 already included in the SACK option being constructed. This
 assures that in normal operation, any segment remaining part of a
 non-contiguous block of data held by the data receiver is reported
 in at least three successive SACK options, even for large-window
 TCP implementations [RFC1323]). After the first SACK block, the
 following SACK blocks in the SACK option may be listed in
 arbitrary order.

Mathis, et. al. Standards Track [Page 5]

https://tools.ietf.org/pdf/rfc2018
https://tools.ietf.org/pdf/rfc1122#section-4.2.2.21
https://tools.ietf.org/pdf/rfc1122#section-4.2.2.21
https://tools.ietf.org/pdf/rfc1323

RFC 2018 TCP Selective Acknowledgement Options October 1996

 It is very important that the SACK option always reports the block
 containing the most recently received segment, because this provides
 the sender with the most up-to-date information about the state of
 the network and the data receiver’s queue.

5. Interpreting the Sack Option and Retransmission Strategy: Data
 Sender Behavior

 When receiving an ACK containing a SACK option, the data sender
 SHOULD record the selective acknowledgment for future reference. The
 data sender is assumed to have a retransmission queue that contains
 the segments that have been transmitted but not yet acknowledged, in
 sequence-number order. If the data sender performs re-packetization
 before retransmission, the block boundaries in a SACK option that it
 receives may not fall on boundaries of segments in the retransmission
 queue; however, this does not pose a serious difficulty for the
 sender.

 One possible implementation of the sender’s behavior is as follows.
 Let us suppose that for each segment in the retransmission queue
 there is a (new) flag bit "SACKed", to be used to indicate that this
 particular segment has been reported in a SACK option.

 When an acknowledgment segment arrives containing a SACK option, the
 data sender will turn on the SACKed bits for segments that have been
 selectively acknowledged. More specifically, for each block in the
 SACK option, the data sender will turn on the SACKed flags for all
 segments in the retransmission queue that are wholly contained within
 that block. This requires straightforward sequence number
 comparisons.

 After the SACKed bit is turned on (as the result of processing a
 received SACK option), the data sender will skip that segment during
 any later retransmission. Any segment that has the SACKed bit turned
 off and is less than the highest SACKed segment is available for
 retransmission.

 After a retransmit timeout the data sender SHOULD turn off all of the
 SACKed bits, since the timeout might indicate that the data receiver
 has reneged. The data sender MUST retransmit the segment at the left
 edge of the window after a retransmit timeout, whether or not the
 SACKed bit is on for that segment. A segment will not be dequeued
 and its buffer freed until the left window edge is advanced over it.

Mathis, et. al. Standards Track [Page 6]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

5.1 Congestion Control Issues

 This document does not attempt to specify in detail the congestion
 control algorithms for implementations of TCP with SACK. However,
 the congestion control algorithms present in the de facto standard
 TCP implementations MUST be preserved [Stevens94]. In particular, to
 preserve robustness in the presence of packets reordered by the
 network, recovery is not triggered by a single ACK reporting out-of-
 order packets at the receiver. Further, during recovery the data
 sender limits the number of segments sent in response to each ACK.
 Existing implementations limit the data sender to sending one segment
 during Reno-style fast recovery, or to two segments during slow-start
 [Jacobson88]. Other aspects of congestion control, such as reducing
 the congestion window in response to congestion, must similarly be
 preserved.

 The use of time-outs as a fall-back mechanism for detecting dropped
 packets is unchanged by the SACK option. Because the data receiver
 is allowed to discard SACKed data, when a retransmit timeout occurs
 the data sender MUST ignore prior SACK information in determining
 which data to retransmit.

 Future research into congestion control algorithms may take advantage
 of the additional information provided by SACK. One such area for
 future research concerns modifications to TCP for a wireless or
 satellite environment where packet loss is not necessarily an
 indication of congestion.

6. Efficiency and Worst Case Behavior

 If the return path carrying ACKs and SACK options were lossless, one
 block per SACK option packet would always be sufficient. Every
 segment arriving while the data receiver holds discontinuous data
 would cause the data receiver to send an ACK with a SACK option
 containing the one altered block in the receiver’s queue. The data
 sender is thus able to construct a precise replica of the receiver’s
 queue by taking the union of all the first SACK blocks.

Mathis, et. al. Standards Track [Page 7]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

 Since the return path is not lossless, the SACK option is defined to
 include more than one SACK block in a single packet. The redundant
 blocks in the SACK option packet increase the robustness of SACK
 delivery in the presence of lost ACKs. For a receiver that is also
 using the time stamp option [Jacobson92], the SACK option has room to
 include three SACK blocks. Thus each SACK block will generally be
 repeated at least three times, if necessary, once in each of three
 successive ACK packets. However, if all of the ACK packets reporting
 a particular SACK block are dropped, then the sender might assume
 that the data in that SACK block has not been received, and
 unnecessarily retransmit those segments.

 The deployment of other TCP options may reduce the number of
 available SACK blocks to 2 or even to 1. This will reduce the
 redundancy of SACK delivery in the presence of lost ACKs. Even so,
 the exposure of TCP SACK in regard to the unnecessary retransmission
 of packets is strictly less than the exposure of current
 implementations of TCP. The worst-case conditions necessary for the
 sender to needlessly retransmit data is discussed in more detail in a
 separate document [Floyd96].

 Older TCP implementations which do not have the SACK option will not
 be unfairly disadvantaged when competing against SACK-capable TCPs.
 This issue is discussed in more detail in [Floyd96].

7. Sack Option Examples

 The following examples attempt to demonstrate the proper behavior of
 SACK generation by the data receiver.

 Assume the left window edge is 5000 and that the data transmitter
 sends a burst of 8 segments, each containing 500 data bytes.

 Case 1: The first 4 segments are received but the last 4 are
 dropped.

 The data receiver will return a normal TCP ACK segment
 acknowledging sequence number 7000, with no SACK option.

Mathis, et. al. Standards Track [Page 8]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

 Case 2: The first segment is dropped but the remaining 7 are
 received.

 Upon receiving each of the last seven packets, the data
 receiver will return a TCP ACK segment that acknowledges
 sequence number 5000 and contains a SACK option specifying
 one block of queued data:

 Triggering ACK Left Edge Right Edge
 Segment

 5000 (lost)
 5500 5000 5500 6000
 6000 5000 5500 6500
 6500 5000 5500 7000
 7000 5000 5500 7500
 7500 5000 5500 8000
 8000 5000 5500 8500
 8500 5000 5500 9000

 Case 3: The 2nd, 4th, 6th, and 8th (last) segments are
 dropped.

 The data receiver ACKs the first packet normally. The
 third, fifth, and seventh packets trigger SACK options as
 follows:

 Triggering ACK First Block 2nd Block 3rd Block
 Segment Left Right Left Right Left Right
 Edge Edge Edge Edge Edge Edge

 5000 5500
 5500 (lost)
 6000 5500 6000 6500
 6500 (lost)
 7000 5500 7000 7500 6000 6500
 7500 (lost)
 8000 5500 8000 8500 7000 7500 6000 6500
 8500 (lost)

Mathis, et. al. Standards Track [Page 9]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

 Suppose at this point, the 4th packet is received out of order.
 (This could either be because the data was badly misordered in the
 network, or because the 2nd packet was retransmitted and lost, and
 then the 4th packet was retransmitted). At this point the data
 receiver has only two SACK blocks to report. The data receiver
 replies with the following Selective Acknowledgment:

 Triggering ACK First Block 2nd Block 3rd Block
 Segment Left Right Left Right Left Right
 Edge Edge Edge Edge Edge Edge

 6500 5500 6000 7500 8000 8500

 Suppose at this point, the 2nd segment is received. The data
 receiver then replies with the following Selective Acknowledgment:

 Triggering ACK First Block 2nd Block 3rd Block
 Segment Left Right Left Right Left Right
 Edge Edge Edge Edge Edge Edge

 5500 7500 8000 8500

8. Data Receiver Reneging

 Note that the data receiver is permitted to discard data in its queue
 that has not been acknowledged to the data sender, even if the data
 has already been reported in a SACK option. Such discarding of
 SACKed packets is discouraged, but may be used if the receiver runs
 out of buffer space.

 The data receiver MAY elect not to keep data which it has reported in
 a SACK option. In this case, the receiver SACK generation is
 additionally qualified:

 * The first SACK block MUST reflect the newest segment. Even if
 the newest segment is going to be discarded and the receiver has
 already discarded adjacent segments, the first SACK block MUST
 report, at a minimum, the left and right edges of the newest
 segment.

 * Except for the newest segment, all SACK blocks MUST NOT report
 any old data which is no longer actually held by the receiver.

 Since the data receiver may later discard data reported in a SACK
 option, the sender MUST NOT discard data before it is acknowledged by
 the Acknowledgment Number field in the TCP header.

Mathis, et. al. Standards Track [Page 10]

https://tools.ietf.org/pdf/rfc2018

RFC 2018 TCP Selective Acknowledgement Options October 1996

9. Security Considerations

 This document neither strengthens nor weakens TCP’s current security
 properties.

10. References

 [Cheriton88] Cheriton, D., "VMTP: Versatile Message Transaction
 Protocol", RFC 1045 , Stanford University, February 1988.

 [Clark87] Clark, D., Lambert, M., and L. Zhang, "NETBLT: A Bulk Data
 Transfer Protocol", RFC 998 , MIT, March 1987.

 [Fall95] Fall, K. and Floyd, S., "Comparisons of Tahoe, Reno, and
 Sack TCP", ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z , December 1995.

 [Floyd96] Floyd, S., "Issues of TCP with SACK",
 ftp://ftp.ee.lbl.gov/papers/issues_sa.ps.Z , January 1996.

 [Huitema81] Huitema, C., and Valet, I., An Experiment on High Speed
 File Transfer using Satellite Links, 7th Data Communication
 Symposium, Mexico, October 1981.

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control",
 Proceedings of SIGCOMM ’88, Stanford, CA., August 1988.

 [Jacobson88}, Jacobson, V. and R. Braden, "TCP Extensions for Long-
 Delay Paths", RFC 1072 , October 1988.

 [Jacobson92] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323 , May 1992.

 [Keshav94] Keshav, presentation to the Internet End-to-End Research
 Group, November 1994.

 [Mathis95] Mathis, M., and Mahdavi, J., TCP Forward Acknowledgment
 Option, presentation to the Internet End-to-End Research Group, June
 1995.

 [Partridge87] Partridge, C., "Private Communication", February 1987.

 [Postel81] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", RFC 793 , DARPA, September
 1981.

 [Stevens94] Stevens, W., TCP/IP Illustrated, Volume 1: The Protocols,
 Addison-Wesley, 1994.

Mathis, et. al. Standards Track [Page 11]

https://tools.ietf.org/pdf/rfc2018
https://tools.ietf.org/pdf/rfc1045
https://tools.ietf.org/pdf/rfc998
ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z
ftp://ftp.ee.lbl.gov/papers/issues_sa.ps.Z
https://tools.ietf.org/pdf/rfc1072
https://tools.ietf.org/pdf/rfc1323
https://tools.ietf.org/pdf/rfc793

RFC 2018 TCP Selective Acknowledgement Options October 1996

 [Strayer92] Strayer, T., Dempsey, B., and Weaver, A., XTP -- the
 xpress transfer protocol. Addison-Wesley Publishing Company, 1992.

 [Velten84] Velten, D., Hinden, R., and J. Sax, "Reliable Data
 Protocol", RFC 908 , BBN, July 1984.

11. Authors’ Addresses

 Matt Mathis and Jamshid Mahdavi
 Pittsburgh Supercomputing Center
 4400 Fifth Ave
 Pittsburgh, PA 15213
 mathis@psc.edu
 mahdavi@psc.edu

 Sally Floyd
 Lawrence Berkeley National Laboratory
 One Cyclotron Road
 Berkeley, CA 94720
 floyd@ee.lbl.gov

 Allyn Romanow
 Sun Microsystems, Inc.
 2550 Garcia Ave., MPK17-202
 Mountain View, CA 94043
 allyn@eng.sun.com

Mathis, et. al. Standards Track [Page 12]

https://tools.ietf.org/pdf/rfc2018
https://tools.ietf.org/pdf/rfc908

